Answer :

Let's determine the values of the given percentages and identify the one with the least value.

1. Calculate [tex]\( 30\% \)[/tex] of 50:
[tex]\[ 30\% \text{ of 50} = \frac{30}{100} \times 50 = 0.30 \times 50 = 15.0 \][/tex]

2. Calculate [tex]\( 50\% \)[/tex] of 30:
[tex]\[ 50\% \text{ of 30} = \frac{50}{100} \times 30 = 0.50 \times 30 = 15.0 \][/tex]

3. Calculate [tex]\( 30\% \)[/tex] of 30:
[tex]\[ 30\% \text{ of 30} = \frac{30}{100} \times 30 = 0.30 \times 30 = 9.0 \][/tex]

4. Calculate [tex]\( 50\% \)[/tex] of 50:
[tex]\[ 50\% \text{ of 50} = \frac{50}{100} \times 50 = 0.50 \times 50 = 25.0 \][/tex]

Now that we have all the values, we can list them:
- [tex]\( 30\% \)[/tex] of 50 is [tex]\( 15.0 \)[/tex]
- [tex]\( 50\% \)[/tex] of 30 is [tex]\( 15.0 \)[/tex]
- [tex]\( 30\% \)[/tex] of 30 is [tex]\( 9.0 \)[/tex]
- [tex]\( 50\% \)[/tex] of 50 is [tex]\( 25.0 \)[/tex]

Comparing these values, we see that [tex]\( 30\% \)[/tex] of 30 has the least value, which is [tex]\( 9.0 \)[/tex].

Thus, the least value is [tex]\( 30\% \)[/tex] of [tex]\( 30 \)[/tex], which is [tex]\( 9.0 \)[/tex].