What force is required to accelerate a body with a mass of 15 kilograms at a rate of [tex]8 \, \text{m/s}^2[/tex]?

A. [tex]23 \, \text{N}[/tex]
B. [tex]1.875 \, \text{kg}[/tex]
C. [tex]120 \, \text{N}[/tex]
D. [tex]23 \, \text{kg}[/tex]



Answer :

To determine the force required to accelerate a body using Newton's second law of motion, we use the formula:

[tex]\[ F = m \cdot a \][/tex]

Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass of the body,
- [tex]\( a \)[/tex] is the acceleration.

Here, we have a mass ([tex]\( m \)[/tex]) of 15 kilograms and an acceleration ([tex]\( a \)[/tex]) of 8 meters per second squared.

So, substituting these values into the formula:

[tex]\[ F = 15 \, \text{kg} \times 8 \, \text{m/s}^2 \][/tex]

When you perform the multiplication:

[tex]\[ F = 120 \, \text{N} \][/tex]

Therefore, the force required is [tex]\( 120 \)[/tex] Newtons.

Correct answer: [tex]\( \boxed{120 \, \text{N}} \)[/tex]