Answer :
To determine the force required to accelerate a body using Newton's second law of motion, we use the formula:
[tex]\[ F = m \cdot a \][/tex]
Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass of the body,
- [tex]\( a \)[/tex] is the acceleration.
Here, we have a mass ([tex]\( m \)[/tex]) of 15 kilograms and an acceleration ([tex]\( a \)[/tex]) of 8 meters per second squared.
So, substituting these values into the formula:
[tex]\[ F = 15 \, \text{kg} \times 8 \, \text{m/s}^2 \][/tex]
When you perform the multiplication:
[tex]\[ F = 120 \, \text{N} \][/tex]
Therefore, the force required is [tex]\( 120 \)[/tex] Newtons.
Correct answer: [tex]\( \boxed{120 \, \text{N}} \)[/tex]
[tex]\[ F = m \cdot a \][/tex]
Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass of the body,
- [tex]\( a \)[/tex] is the acceleration.
Here, we have a mass ([tex]\( m \)[/tex]) of 15 kilograms and an acceleration ([tex]\( a \)[/tex]) of 8 meters per second squared.
So, substituting these values into the formula:
[tex]\[ F = 15 \, \text{kg} \times 8 \, \text{m/s}^2 \][/tex]
When you perform the multiplication:
[tex]\[ F = 120 \, \text{N} \][/tex]
Therefore, the force required is [tex]\( 120 \)[/tex] Newtons.
Correct answer: [tex]\( \boxed{120 \, \text{N}} \)[/tex]