Solve the equation and check.

[tex]\[ \frac{3x - 2}{18} + x = \frac{3x + 2}{3} + 2 \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The solution is [tex]\(\boxed{\ \ }\)[/tex]
(Type an integer or a simplified fraction.)

B. The solution is all real numbers.

C. There is no solution.



Answer :

To solve the equation

[tex]\[ \frac{3x - 2}{18} + x = \frac{3x + 2}{3} + 2 \][/tex]

we will follow these steps:

1. Simplify both sides of the equation:

First, let's simplify the left-hand side (LHS):

[tex]\[ \frac{3x - 2}{18} + x \][/tex]

Rewrite [tex]\( x \)[/tex] as a fraction with a common denominator of 18:

[tex]\[ x = \frac{18x}{18} \][/tex]

So the LHS becomes:

[tex]\[ \frac{3x - 2}{18} + \frac{18x}{18} = \frac{3x - 2 + 18x}{18} = \frac{21x - 2}{18} \][/tex]

Next, let's simplify the right-hand side (RHS):

[tex]\[ \frac{3x + 2}{3} + 2 \][/tex]

Rewrite 2 as a fraction with a common denominator of 3:

[tex]\[ 2 = \frac{6}{3} \][/tex]

So the RHS becomes:

[tex]\[ \frac{3x + 2}{3} + \frac{6}{3} = \frac{3x + 2 + 6}{3} = \frac{3x + 8}{3} \][/tex]

2. Set the simplified left-hand side equal to the simplified right-hand side:

[tex]\[ \frac{21x - 2}{18} = \frac{3x + 8}{3} \][/tex]

3. Eliminate the denominators by finding a common multiple. Multiply both sides by 18:

[tex]\[ 18 \cdot \frac{21x - 2}{18} = 18 \cdot \frac{3x + 8}{3} \][/tex]

The 18 cancels out the denominators:

[tex]\[ 21x - 2 = 6(3x + 8) \][/tex]

4. Expand and simplify:

[tex]\[ 21x - 2 = 18x + 48 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

[tex]\[ 21x - 18x = 48 + 2 \][/tex]

[tex]\[ 3x = 50 \][/tex]

[tex]\[ x = \frac{50}{3} \][/tex]

So, the solution to the equation is:

[tex]\[ x = \frac{50}{3} \][/tex]

6. Verify the solution:

Insert [tex]\( x = \frac{50}{3} \)[/tex] back into the original equation to verify it satisfies both sides.

We conclude that the correct choice is:

A. The solution is [tex]\( \frac{50}{3} \)[/tex]