Select the correct answer.

What is the value of [tex][tex]$x$[/tex][/tex]?

[tex]\sin (4x - 10)^\circ = \cos (40 - x)^\circ[/tex]

A. [tex]x = 17[/tex]
B. [tex]x = 10[/tex]
C. [tex]x = 20[/tex]
D. [tex]x = 50[/tex]



Answer :

To solve the given trigonometric equation [tex]$\sin (4x - 10)^{\circ} = \cos (40 - x)^{\circ}$[/tex], we need to use a trigonometric identity. One known identity is that [tex]\(\sin(A) = \cos(B)\)[/tex] if and only if [tex]\(A + B = 90^\circ\)[/tex].

Given the equation:
[tex]$ \sin (4x - 10)^{\circ} = \cos (40 - x)^{\circ} $[/tex]

We can use the identity [tex]\(\sin(A) = \cos(B)\)[/tex] implies:
[tex]$ (4x - 10) + (40 - x) = 90 $[/tex]

Now let's solve the equation step-by-step.

1. Combine the terms inside the parentheses:
[tex]$ 4x - 10 + 40 - x = 90 $[/tex]

2. Simplify the left-hand side:
[tex]$ 3x + 30 = 90 $[/tex]

3. Subtract 30 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]$ 3x = 60 $[/tex]

4. Divide both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]$ x = 20 $[/tex]

Therefore, the value of [tex]\(x\)[/tex] is:
[tex]$ \boxed{20} $[/tex]

So the correct answer is:
C. [tex]\(x = 20\)[/tex]