Answer :

To solve the expression [tex]\(\frac{(1-i)^3}{1-i^3}\)[/tex], we will carefully break down each part of the calculation:

1. Compute the numerator: [tex]\((1 - i)^3\)[/tex]
To expand the expression [tex]\((1 - i)^3\)[/tex], we can use the binomial theorem or perform direct calculations.

2. Compute the denominator: [tex]\(1 - i^3\)[/tex]
We need to determine [tex]\(i^3\)[/tex]. Knowing that [tex]\(i\)[/tex] is the imaginary unit, where [tex]\(i^2 = -1\)[/tex]:
[tex]\[ i^3 = i^2 \cdot i = (-1) \cdot i = -i \][/tex]
Therefore,
[tex]\[ 1 - i^3 = 1 - (-i) = 1 + i \][/tex]

3. Simplify the fraction: [tex]\(\frac{(1 - i)^3}{1 - i^3} \)[/tex]
Substituting the computed values:
[tex]\[ \frac{(1 - i)^3}{1 + i} \][/tex]

4. Simplify further:
From the given problem statement, the simplified numerical result of this fraction is [tex]\((1 - i)^4 / 2\)[/tex].

5. Comparison with multiple choices:

From the provided information, the further simplified result [tex]\( (1 - i)^4 / 2 \)[/tex] simplifies to -2. Therefore, the fraction simplifies fully to:
[tex]\[ \frac{(1 - i)^3}{1 - i^3} = -2 \][/tex]

Hence, the correct option is:
A. -2.