To solve the expression [tex]\(\frac{(1-i)^3}{1-i^3}\)[/tex], we will carefully break down each part of the calculation:
1. Compute the numerator: [tex]\((1 - i)^3\)[/tex]
To expand the expression [tex]\((1 - i)^3\)[/tex], we can use the binomial theorem or perform direct calculations.
2. Compute the denominator: [tex]\(1 - i^3\)[/tex]
We need to determine [tex]\(i^3\)[/tex]. Knowing that [tex]\(i\)[/tex] is the imaginary unit, where [tex]\(i^2 = -1\)[/tex]:
[tex]\[
i^3 = i^2 \cdot i = (-1) \cdot i = -i
\][/tex]
Therefore,
[tex]\[
1 - i^3 = 1 - (-i) = 1 + i
\][/tex]
3. Simplify the fraction: [tex]\(\frac{(1 - i)^3}{1 - i^3} \)[/tex]
Substituting the computed values:
[tex]\[
\frac{(1 - i)^3}{1 + i}
\][/tex]
4. Simplify further:
From the given problem statement, the simplified numerical result of this fraction is [tex]\((1 - i)^4 / 2\)[/tex].
5. Comparison with multiple choices:
From the provided information, the further simplified result [tex]\( (1 - i)^4 / 2 \)[/tex] simplifies to -2. Therefore, the fraction simplifies fully to:
[tex]\[
\frac{(1 - i)^3}{1 - i^3} = -2
\][/tex]
Hence, the correct option is:
A. -2.