The chart below shows the economic costs of two school lunches.

\begin{tabular}{|l|r|r|}
\hline \multicolumn{3}{|c|}{Economic Cost per Lunch} \\
\hline & \begin{tabular}{c}
Current \\
lunch
\end{tabular} & \begin{tabular}{c}
Healthier \\
lunch
\end{tabular} \\
\hline Main course & [tex]$\$[/tex] 1.15[tex]$ & $[/tex]\[tex]$ 1.85$[/tex] \\
\hline Side dish & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.90$[/tex] \\
\hline Dessert & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.10$[/tex] \\
\hline Beverage & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.05$[/tex] \\
\hline Total & [tex]$\$[/tex] 2.05[tex]$ & $[/tex]\[tex]$ 2.80$[/tex] \\
\hline
\end{tabular}

The smallest price difference between the two lunches is found in the

A. beverage

B. main course

C. dessert

D. side dish



Answer :

To determine the smallest price difference between the components of the two lunches—current lunch and healthier lunch—we'll go step-by-step through the cost comparison for each component and find the differences.

Here are the costs from the chart:

- Main course:
- Current lunch: \[tex]$1.15 - Healthier lunch: \$[/tex]1.85

Difference: [tex]\( \$1.85 - \$1.15 = \$0.70 \)[/tex]

- Side dish:
- Current lunch: \[tex]$0.30 - Healthier lunch: \$[/tex]0.90

Difference: [tex]\( \$0.90 - \$0.30 = \$0.60 \)[/tex]

- Dessert:
- Current lunch: \[tex]$0.30 - Healthier lunch: \$[/tex]0.10

Difference: [tex]\( \$0.10 - \$0.30 = -\$0.20 \)[/tex]

- Beverage:
- Current lunch: \[tex]$0.30 - Healthier lunch: \$[/tex]0.05

Difference: [tex]\( \$0.05 - \$0.30 = -\$0.25 \)[/tex]

Next, we compare these differences to find the smallest one:

- Main course: \[tex]$0.70 - Side dish: \$[/tex]0.60
- Dessert: -\[tex]$0.20 - Beverage: -\$[/tex]0.25

The smallest difference, in absolute value, is -\$0.25, which corresponds to the beverage.

Therefore, the smallest price difference between the two lunches is found in the beverage.