What is the product?

[tex](3x - 6)\left(2x^2 - 7x + 1\right)[/tex]

A. [tex]-12x^2 + 42x - 6[/tex]
B. [tex]-12x^2 + 21x + 6[/tex]
C. [tex]6x^3 - 33x^2 + 45x - 6[/tex]
D. [tex]6x^3 - 27x^2 - 39x + 6[/tex]



Answer :

To find the product of [tex]\((3x - 6)(2x^2 - 7x + 1)\)[/tex], let's perform the multiplication step by step. We need to distribute each term in the first binomial (3x - 6) to each term in the second polynomial (2x^2 - 7x + 1).

1. Distribute [tex]\(3x\)[/tex] to each term in [tex]\(2x^2 - 7x + 1\)[/tex]:

[tex]\[ 3x \cdot 2x^2 = 6x^3 \][/tex]

[tex]\[ 3x \cdot (-7x) = -21x^2 \][/tex]

[tex]\[ 3x \cdot 1 = 3x \][/tex]

So, distributing [tex]\(3x\)[/tex] gives us: [tex]\(6x^3 - 21x^2 + 3x\)[/tex].

2. Distribute [tex]\(-6\)[/tex] to each term in [tex]\(2x^2 - 7x + 1\)[/tex]:

[tex]\[ -6 \cdot 2x^2 = -12x^2 \][/tex]

[tex]\[ -6 \cdot (-7x) = 42x \][/tex]

[tex]\[ -6 \cdot 1 = -6 \][/tex]

So, distributing [tex]\(-6\)[/tex] gives us: [tex]\(-12x^2 + 42x - 6\)[/tex].

3. Combine the results from steps 1 and 2:

[tex]\[ 6x^3 - 21x^2 + 3x + (-12x^2 + 42x - 6) \][/tex]

Now combine like terms:

[tex]\[ 6x^3 + (-21x^2 - 12x^2) + (3x + 42x) + (-6) \][/tex]

Simplify the expression:

[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

So, the product of [tex]\((3x - 6)(2x^2 - 7x + 1)\)[/tex] is:

[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Therefore, the correct answer among the given choices is:

[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]