Answer :
Let's break down and solve the problem step by step.
1. Determine [tex]\( P \)[/tex]:
- From the given, [tex]\( P = 8.5 + 8.5 + 8.5 \)[/tex].
- Calculate [tex]\( P \)[/tex]:
[tex]\[ P = 25.5 \][/tex]
2. Given [tex]\( D \)[/tex]:
- [tex]\( D = 25.54 \)[/tex]
3. Determine [tex]\( A \)[/tex]:
- Let's examine the calculation step by step.
[tex]\[ \begin{array}{r} 85 \\ + \frac{85}{25} \\ + \frac{85}{455} \end{array} \][/tex]
- Calculate [tex]\( 85 \)[/tex]:
[tex]\[ 85 \][/tex]
- Calculate [tex]\( \frac{85}{25} \)[/tex]:
[tex]\[ \frac{85}{25} = 3.4 \][/tex]
- Calculate [tex]\( \frac{85}{455} \)[/tex]:
[tex]\[ \frac{85}{455} = 0.1868 \][/tex]
- Sum these values:
[tex]\[ 85 + 3.4 + 0.1868 = 88.5868 \][/tex]
Next, we continue with the next set of numbers:
[tex]\[ \begin{array}{r} 8.5 \\ +4.25 \\ +\frac{4.05}{17.25} \end{array} \][/tex]
- Calculate [tex]\( 8.5 \)[/tex]:
[tex]\[ 8.5 \][/tex]
- Calculate [tex]\( 4.25 \)[/tex]:
[tex]\[ 4.25 \][/tex]
- Calculate [tex]\( \frac{4.05}{17.25} \)[/tex]:
[tex]\[ \frac{4.05}{17.25} \approx 0.2348 \][/tex]
- Sum these values:
[tex]\[ 8.5 + 4.25 + 0.2348 = 12.9848 \][/tex]
Again, continue with the next set of numbers:
[tex]\[ \begin{array}{r} 24 \\ 4.25 \\ \frac{18.5}{2125} \\ +\frac{3200}{341.25} \end{array} \][/tex]
- Calculate [tex]\( 24 \)[/tex]:
[tex]\[ 24 \][/tex]
- Calculate [tex]\( 4.25 \)[/tex]:
[tex]\[ 4.25 \][/tex]
- Calculate [tex]\( \frac{18.5}{2125} \)[/tex]:
[tex]\[ \frac{18.5}{2125} \approx 0.0087 \][/tex]
- Calculate [tex]\( \frac{3200}{341.25} \)[/tex]:
[tex]\[ \frac{3200}{341.25} \approx 9.375 \][/tex]
- Sum these values:
[tex]\[ 24 + 4.25 + 0.0087 + 9.375 = 37.6337 \][/tex]
4. Sum all parts of [tex]\( A \)[/tex]:
- Combining all intermediate results:
[tex]\[ A = 88.5868 + 12.9848 + 37.6337 = 139.2053 \][/tex]
Thus, our results are:
- [tex]\( P = 25.5 \)[/tex]
- [tex]\( D = 25.54 \)[/tex]
- [tex]\( A = 139.2053 \)[/tex]
1. Determine [tex]\( P \)[/tex]:
- From the given, [tex]\( P = 8.5 + 8.5 + 8.5 \)[/tex].
- Calculate [tex]\( P \)[/tex]:
[tex]\[ P = 25.5 \][/tex]
2. Given [tex]\( D \)[/tex]:
- [tex]\( D = 25.54 \)[/tex]
3. Determine [tex]\( A \)[/tex]:
- Let's examine the calculation step by step.
[tex]\[ \begin{array}{r} 85 \\ + \frac{85}{25} \\ + \frac{85}{455} \end{array} \][/tex]
- Calculate [tex]\( 85 \)[/tex]:
[tex]\[ 85 \][/tex]
- Calculate [tex]\( \frac{85}{25} \)[/tex]:
[tex]\[ \frac{85}{25} = 3.4 \][/tex]
- Calculate [tex]\( \frac{85}{455} \)[/tex]:
[tex]\[ \frac{85}{455} = 0.1868 \][/tex]
- Sum these values:
[tex]\[ 85 + 3.4 + 0.1868 = 88.5868 \][/tex]
Next, we continue with the next set of numbers:
[tex]\[ \begin{array}{r} 8.5 \\ +4.25 \\ +\frac{4.05}{17.25} \end{array} \][/tex]
- Calculate [tex]\( 8.5 \)[/tex]:
[tex]\[ 8.5 \][/tex]
- Calculate [tex]\( 4.25 \)[/tex]:
[tex]\[ 4.25 \][/tex]
- Calculate [tex]\( \frac{4.05}{17.25} \)[/tex]:
[tex]\[ \frac{4.05}{17.25} \approx 0.2348 \][/tex]
- Sum these values:
[tex]\[ 8.5 + 4.25 + 0.2348 = 12.9848 \][/tex]
Again, continue with the next set of numbers:
[tex]\[ \begin{array}{r} 24 \\ 4.25 \\ \frac{18.5}{2125} \\ +\frac{3200}{341.25} \end{array} \][/tex]
- Calculate [tex]\( 24 \)[/tex]:
[tex]\[ 24 \][/tex]
- Calculate [tex]\( 4.25 \)[/tex]:
[tex]\[ 4.25 \][/tex]
- Calculate [tex]\( \frac{18.5}{2125} \)[/tex]:
[tex]\[ \frac{18.5}{2125} \approx 0.0087 \][/tex]
- Calculate [tex]\( \frac{3200}{341.25} \)[/tex]:
[tex]\[ \frac{3200}{341.25} \approx 9.375 \][/tex]
- Sum these values:
[tex]\[ 24 + 4.25 + 0.0087 + 9.375 = 37.6337 \][/tex]
4. Sum all parts of [tex]\( A \)[/tex]:
- Combining all intermediate results:
[tex]\[ A = 88.5868 + 12.9848 + 37.6337 = 139.2053 \][/tex]
Thus, our results are:
- [tex]\( P = 25.5 \)[/tex]
- [tex]\( D = 25.54 \)[/tex]
- [tex]\( A = 139.2053 \)[/tex]