c) The external angles of a polygon are [tex]30^{\circ}[/tex], [tex]40^{\circ}[/tex], [tex]120^{\circ}[/tex], [tex]142^{\circ}[/tex], and [tex]y^{\circ}[/tex]. Find the value of [tex]y[/tex].



Answer :

Certainly! Let's solve this step-by-step.

1. Identify the external angles of the polygon:
- The external angles given are [tex]\(30^\circ\)[/tex], [tex]\(40^\circ\)[/tex], [tex]\(120^\circ\)[/tex], and [tex]\(142^\circ\)[/tex].
- The fifth angle is unknown and denoted by [tex]\(y\)[/tex].

2. Recall the property of external angles of a polygon:
- The sum of the external angles of any polygon is always [tex]\(360^\circ\)[/tex].

3. Sum the known external angles:
- Adding the given angles, we get:
[tex]\[ 30^\circ + 40^\circ + 120^\circ + 142^\circ = 332^\circ \][/tex]

4. Calculate the unknown external angle [tex]\(y\)[/tex]:
- To find [tex]\(y\)[/tex], we subtract the sum of the known angles from the total sum of external angles:
[tex]\[ y = 360^\circ - 332^\circ = 28^\circ \][/tex]

So, the value of [tex]\(y\)[/tex] is [tex]\(28^\circ\)[/tex].