Answer :

To find the value of [tex]\( f(2) + f(-1) \)[/tex] for the function [tex]\( f(x) = x^2 - 5x + 1 \)[/tex], we need to follow these steps:

1. Calculate [tex]\( f(2) \)[/tex]:
Substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = 2^2 - 5(2) + 1 \][/tex]
Simplify the expression step by step:
[tex]\[ 2^2 = 4 \][/tex]
[tex]\[ -5(2) = -10 \][/tex]
Combining these, we get:
[tex]\[ f(2) = 4 - 10 + 1 \][/tex]
[tex]\[ f(2) = -5 \][/tex]

2. Calculate [tex]\( f(-1) \)[/tex]:
Substitute [tex]\( x = -1 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(-1) = (-1)^2 - 5(-1) + 1 \][/tex]
Simplify the expression step by step:
[tex]\[ (-1)^2 = 1 \][/tex]
[tex]\[ -5(-1) = 5 \][/tex]
Combining these, we get:
[tex]\[ f(-1) = 1 + 5 + 1 \][/tex]
[tex]\[ f(-1) = 7 \][/tex]

3. Add the results of [tex]\( f(2) \)[/tex] and [tex]\( f(-1) \)[/tex]:
Now, we need to add [tex]\( f(2) \)[/tex] and [tex]\( f(-1) \)[/tex]:
[tex]\[ f(2) + f(-1) = -5 + 7 \][/tex]

4. Final Result:
[tex]\[ f(2) + f(-1) = 2 \][/tex]

So, the value of [tex]\( f(2) + f(-1) \)[/tex] is [tex]\( \boxed{2} \)[/tex].