What is the density of a [tex][tex]$700 \, \text{kg}$[/tex][/tex] object with a volume of [tex][tex]$649 \, \text{m}^3$[/tex][/tex]?

(Density: [tex][tex]$D = \frac{m}{v}$[/tex][/tex])

A. [tex][tex]$0.927 \, \text{kg} / \text{m}^3$[/tex][/tex]
B. [tex][tex]$0.4543 \, \text{kg} / \text{m}^3$[/tex][/tex]
C. [tex][tex]$1.079 \, \text{kg} / \text{m}^3$[/tex][/tex]
D. [tex][tex]$4.543 \, \text{kg} / \text{m}^3$[/tex][/tex]



Answer :

To find the density of an object, you use the formula for density, which is:

[tex]\[ D = \frac{m}{v} \][/tex]

where:
- [tex]\( D \)[/tex] is the density
- [tex]\( m \)[/tex] is the mass
- [tex]\( v \)[/tex] is the volume

Given:
- Mass ([tex]\( m \)[/tex]) = 700 kg
- Volume ([tex]\( v \)[/tex]) = 649 [tex]$\text{m}^3$[/tex]

Substitute the values into the formula:

[tex]\[ D = \frac{700 \text{ kg}}{649 \text{ m}^3} \][/tex]

Carrying out the division:

[tex]\[ D = 1.078582434514638 \text{ kg/m}^3 \][/tex]

When rounded to three decimal places, the density is:

[tex]\[ D \approx 1.079 \text{ kg/m}^3 \][/tex]

So, the correct answer is:

[tex]\[ 1.079 \text{ kg/m}^3 \][/tex]