Compare these rational numbers. Which of the following are true?

i. [tex]$-4.3 \ \textless \ -3.7$[/tex]
ii. [tex]$-3.7 \ \textless \ -2.6$[/tex]
iii. [tex]$-4.3 \ \textgreater \ -2.6$[/tex]
iv. [tex]$-1.8 \ \textgreater \ -0.9$[/tex]

A. i, ii, iii, iv
B. ii, iii
C. iii and iv
D. i and ii



Answer :

Let’s compare the given rational numbers step-by-step to determine which statements are true.

### Statement i: [tex]\(-4.3 < -3.7\)[/tex]

When comparing negative numbers, the number with the smaller absolute value is actually the larger number because it is closer to zero. Here:
- [tex]\(-4.3\)[/tex] is more negative (farther from zero) than [tex]\(-3.7\)[/tex].

Therefore, [tex]\(-4.3 < -3.7\)[/tex]. This statement is true.

### Statement ii: [tex]\(-3.7 < -2.6\)[/tex]

Similarly, comparing [tex]\(-3.7\)[/tex] and [tex]\(-2.6\)[/tex]:
- [tex]\(-2.6\)[/tex] is closer to zero and thus less negative than [tex]\(-3.7\)[/tex].

Therefore, [tex]\(-3.7 < -2.6\)[/tex]. This statement is true.

### Statement iii: [tex]\(-4.3 > -2.6\)[/tex]

For [tex]\(-4.3\)[/tex] and [tex]\(-2.6\)[/tex]:
- [tex]\(-2.6\)[/tex] is closer to zero and thus less negative than [tex]\(-4.3\)[/tex].

Therefore, [tex]\(-4.3 > -2.6\)[/tex] is incorrect because [tex]\(-4.3\)[/tex] is more negative. This statement is false.

### Statement iv: [tex]\(-1.8 > -0.9\)[/tex]

For [tex]\(-1.8\)[/tex] and [tex]\(-0.9\)[/tex]:
- [tex]\(-0.9\)[/tex] is closer to zero and thus less negative than [tex]\(-1.8\)[/tex].

Therefore, [tex]\(-1.8 > -0.9\)[/tex] is incorrect because [tex]\(-1.8\)[/tex] is more negative. This statement is false.

Given the analysis, we can conclude:
- Statements i and ii are true.
- Statements iii and iv are false.

So, the correct answer is:

i and ii