Which of the following [tex]$z$[/tex]-values, standard deviations, and sample sizes produce a margin of error of 0.95?

[tex]\[ M E = \frac{z \cdot S}{\sqrt{n}} \][/tex]

A. [tex]\( z=2.14 ; s=4 ; n=9 \)[/tex]

B. [tex]\( z=2.14 ; s=4 ; n=81 \)[/tex]

C. [tex]\( z=2.14 ; s=16 ; n=9 \)[/tex]

D. [tex]\( z=2.14 ; s=16 ; n=81 \)[/tex]



Answer :

To determine which of the given combinations of [tex]\( z \)[/tex]-values, standard deviations [tex]\( s \)[/tex], and sample sizes [tex]\( n \)[/tex] result in a margin of error (ME) of 0.95, we will use the given margin of error formula:

[tex]\[ ME = \frac{z \cdot s}{\sqrt{n}} \][/tex]

Let's examine each combination step-by-step:

1. Combination 1: [tex]\( z = 2.14 \)[/tex], [tex]\( s = 4 \)[/tex], [tex]\( n = 9 \)[/tex]

[tex]\[ ME = \frac{2.14 \cdot 4}{\sqrt{9}} = \frac{8.56}{3} = 2.8533\ldots \][/tex]

Margin of Error (ME) = 2.8533 (approx). This does not equal 0.95.

2. Combination 2: [tex]\( z = 2.14 \)[/tex], [tex]\( s = 4 \)[/tex], [tex]\( n = 81 \)[/tex]

[tex]\[ ME = \frac{2.14 \cdot 4}{\sqrt{81}} = \frac{8.56}{9} = 0.9511\ldots \][/tex]

Margin of Error (ME) = 0.9511 (approx). This does not exactly equal 0.95.

3. Combination 3: [tex]\( z = 2.14 \)[/tex], [tex]\( s = 16 \)[/tex], [tex]\( n = 9 \)[/tex]

[tex]\[ ME = \frac{2.14 \cdot 16}{\sqrt{9}} = \frac{34.24}{3} = 11.4133\ldots \][/tex]

Margin of Error (ME) = 11.4133 (approx). This does not equal 0.95.

4. Combination 4: [tex]\( z = 2.14 \)[/tex], [tex]\( s = 16 \)[/tex], [tex]\( n = 81 \)[/tex]

[tex]\[ ME = \frac{2.14 \cdot 16}{\sqrt{81}} = \frac{34.24}{9} = 3.8044\ldots \][/tex]

Margin of Error (ME) = 3.8044 (approx). This does not equal 0.95.

We have evaluated all the combinations, and none of them result in a margin of error of exactly 0.95. Therefore, none of the given combinations produce the desired margin of error.

Thus, the answer is:

[tex]\[ \boxed{[]} \][/tex]