Combine like terms in the given polynomial. Then, evaluate for [tex] x = -2, y = -3 [/tex].

[tex]\[ 2xy^2 + 3x - 4y^2 + 2xy^2 - 3xy^2 - x \][/tex]



Answer :

Sure, let's simplify the given polynomial step by step and then evaluate it for [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex].

1. Combine like terms in the polynomial:

The given polynomial is:
[tex]\[ 2xy^2 + 3x - 4y^2 + 2xy^2 - 3xy^2 - x \][/tex]

Let's group the like terms:
[tex]\[ (2xy^2 + 2xy^2 - 3xy^2) + (3x - x) - 4y^2 \][/tex]

Combine the [tex]\( xy^2 \)[/tex] terms:
[tex]\[ (2 + 2 - 3)xy^2 + (3 - 1)x - 4y^2 \][/tex]
[tex]\[ xy^2 + 2x - 4y^2 \][/tex]

So, the simplified polynomial is:
[tex]\[ xy^2 + 2x - 4y^2 \][/tex]

2. Evaluate the simplified polynomial for [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex]:

Let's substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex] into the simplified polynomial:

[tex]\[ (-2)(-3)^2 + 2(-2) - 4(-3)^2 \][/tex]

3. Compute each term separately:

- For the term [tex]\( xy^2 \)[/tex]:
[tex]\[ (-2)(-3)^2 = (-2)(9) = -18 \][/tex]
- For the term [tex]\( 2x \)[/tex]:
[tex]\[ 2(-2) = -4 \][/tex]
- For the term [tex]\( -4y^2 \)[/tex]:
[tex]\[ -4(-3)^2 = -4(9) = -36 \][/tex]

4. Add the computed values:

[tex]\[ -18 + (-4) + (-36) \][/tex]

Combine the values:
[tex]\[ -18 - 4 - 36 = -58 \][/tex]

So, the value of the polynomial [tex]\( 2xy^2 + 3x - 4y^2 + 2xy^2 - 3xy^2 - x \)[/tex] when evaluated for [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex] is [tex]\(-58\)[/tex]. Additionally, the individual contributions to the result are [tex]\(-18\)[/tex], [tex]\(-4\)[/tex], and [tex]\(-36\)[/tex] respectively.