Answered

\begin{tabular}{|c|c|}
\hline
\multicolumn{2}{|c|}{Population (millions) - May 2010} \\
\hline
Country & Population \\
\hline
Australia & 22 \\
\hline
Paraguay & 7 \\
\hline
South Africa & 49 \\
\hline
Croatia & [tex]$x$[/tex] \\
\hline
\end{tabular}

Which expression represents the total population of all four countries?

A. [tex]$78 + x$[/tex]

B. [tex]$78 + 2x$[/tex]

C. [tex]$78 - x$[/tex]

[tex]\[
600 \text{ mL} = \square \text{ L}
\][/tex]



Answer :

To determine the expression that represents the total population of all four countries, we need to sum the populations of each country.

Given the populations in millions:
- Australia: 22 million
- Paraguay: 7 million
- South Africa: 49 million
- Croatia: [tex]\( x \)[/tex] million (where [tex]\( x \)[/tex] is an unknown variable)

We can express the total population by adding these values together:

[tex]\[ \text{Total population} = \text{Australia} + \text{Paraguay} + \text{South Africa} + \text{Croatia} \][/tex]

Plugging in the given numbers, we have:

[tex]\[ \text{Total population} = 22 + 7 + 49 + x \][/tex]

First, let's add the known populations:

[tex]\[ 22 + 7 = 29 \][/tex]

Then, add the next known value:

[tex]\[ 29 + 49 = 78 \][/tex]

Now, include the unknown population of Croatia, represented by [tex]\( x \)[/tex]:

[tex]\[ 78 + x \][/tex]

Thus, the expression that represents the total population of all four countries is:

[tex]\[ 78 + x \][/tex]

Therefore, the correct answer is:
A) [tex]\(78 + x\)[/tex]

For the second part of the problem regarding the units of measurement conversion:

To convert 600 mL to liters, we use the fact that [tex]\(1 \text{ liter} = 1000 \text{ milliliters} (\text{mL})\)[/tex].

Thus,

[tex]\[ 600 \text{ mL} = \frac{600 \text{ mL}}{1000 \text{ mL/L}} = 0.6 \text{ L} \][/tex]

So,

[tex]\[ 600 \text{ mL} = 0.6 \text{ L} \][/tex]