Answer :
To determine the expression that represents the total population of all four countries, we need to sum the populations of each country.
Given the populations in millions:
- Australia: 22 million
- Paraguay: 7 million
- South Africa: 49 million
- Croatia: [tex]\( x \)[/tex] million (where [tex]\( x \)[/tex] is an unknown variable)
We can express the total population by adding these values together:
[tex]\[ \text{Total population} = \text{Australia} + \text{Paraguay} + \text{South Africa} + \text{Croatia} \][/tex]
Plugging in the given numbers, we have:
[tex]\[ \text{Total population} = 22 + 7 + 49 + x \][/tex]
First, let's add the known populations:
[tex]\[ 22 + 7 = 29 \][/tex]
Then, add the next known value:
[tex]\[ 29 + 49 = 78 \][/tex]
Now, include the unknown population of Croatia, represented by [tex]\( x \)[/tex]:
[tex]\[ 78 + x \][/tex]
Thus, the expression that represents the total population of all four countries is:
[tex]\[ 78 + x \][/tex]
Therefore, the correct answer is:
A) [tex]\(78 + x\)[/tex]
For the second part of the problem regarding the units of measurement conversion:
To convert 600 mL to liters, we use the fact that [tex]\(1 \text{ liter} = 1000 \text{ milliliters} (\text{mL})\)[/tex].
Thus,
[tex]\[ 600 \text{ mL} = \frac{600 \text{ mL}}{1000 \text{ mL/L}} = 0.6 \text{ L} \][/tex]
So,
[tex]\[ 600 \text{ mL} = 0.6 \text{ L} \][/tex]
Given the populations in millions:
- Australia: 22 million
- Paraguay: 7 million
- South Africa: 49 million
- Croatia: [tex]\( x \)[/tex] million (where [tex]\( x \)[/tex] is an unknown variable)
We can express the total population by adding these values together:
[tex]\[ \text{Total population} = \text{Australia} + \text{Paraguay} + \text{South Africa} + \text{Croatia} \][/tex]
Plugging in the given numbers, we have:
[tex]\[ \text{Total population} = 22 + 7 + 49 + x \][/tex]
First, let's add the known populations:
[tex]\[ 22 + 7 = 29 \][/tex]
Then, add the next known value:
[tex]\[ 29 + 49 = 78 \][/tex]
Now, include the unknown population of Croatia, represented by [tex]\( x \)[/tex]:
[tex]\[ 78 + x \][/tex]
Thus, the expression that represents the total population of all four countries is:
[tex]\[ 78 + x \][/tex]
Therefore, the correct answer is:
A) [tex]\(78 + x\)[/tex]
For the second part of the problem regarding the units of measurement conversion:
To convert 600 mL to liters, we use the fact that [tex]\(1 \text{ liter} = 1000 \text{ milliliters} (\text{mL})\)[/tex].
Thus,
[tex]\[ 600 \text{ mL} = \frac{600 \text{ mL}}{1000 \text{ mL/L}} = 0.6 \text{ L} \][/tex]
So,
[tex]\[ 600 \text{ mL} = 0.6 \text{ L} \][/tex]