(a) [tex]\(\sqrt[4]{\sqrt[3]{2^2}}\)[/tex] equals:

A. 3
B. 4
C. 5

Which of the following is correct?

A. [tex]\(2 \frac{-3}{n}\)[/tex]
B. [tex]\(2^{-8}\)[/tex]
C. [tex]\(2 \frac{a}{2}\)[/tex]
D. [tex]\(2^6\)[/tex]



Answer :

Sure! Let's break down the problem step by step to find the value of [tex]\(\sqrt[4]{\sqrt[3]{2^2}}\)[/tex].

1. First, calculate [tex]\(2^2\)[/tex]:
- [tex]\[ 2^2 = 4 \][/tex]

2. Next, find the cube root of the result from step 1:
- [tex]\[ \sqrt[3]{4} \approx 1.5874010519681994 \][/tex]

3. Finally, find the fourth root of the result from step 2:
- [tex]\[ \sqrt[4]{1.5874010519681994} \approx 1.122462048309373 \][/tex]

So, putting everything together, we have:
[tex]\[ \sqrt[4]{\sqrt[3]{2^2}} = 1.122462048309373 \][/tex]

The closest option to this number is not listed among the provided choices (a), (c), or (d).

Therefore, the value of [tex]\(\sqrt[4]{\sqrt[3]{2^2}}\)[/tex] is approximately:
[tex]\[ 1.122462048309373 \][/tex]