Let [tex]$r = \langle 5, -1 \rangle, s = \langle 6, 0 \rangle[tex]$[/tex], and [tex]$[/tex]t = \langle -1, -3 \rangle[tex]$[/tex]. Aaron incorrectly determined [tex]$[/tex]2r + 4s - 7t[tex]$[/tex] as [tex]$[/tex]\langle 41, -23 \rangle$[/tex]. Review his calculations.

[tex]\[
\begin{array}{l}
2r + 4s - 7t \\
2\langle 5, -1 \rangle + 4\langle 6, 0 \rangle - 7\langle -1, -3 \rangle \\
\langle 10, -2 \rangle + \langle 24, 0 \rangle + \langle 7, -21 \rangle \\
\langle 41, -23 \rangle
\end{array}
\][/tex]

What mistake did Aaron make?

A. He added [tex]$\langle 10, -2 \rangle + \langle 24, 0 \rangle + \langle 7, -21 \rangle$[/tex] incorrectly.

B. He should have subtracted [tex]$\langle 7, -21 \rangle$[/tex] rather than adding it.

C. He did not correctly distribute 4 to both components of [tex]$s$[/tex].

D. He did not correctly distribute the negative when subtracting [tex]$7t$[/tex].



Answer :

To verify Aaron's calculations and identify his mistake, let's break down the problem step-by-step:

We are given the vectors:
[tex]\[ r = \langle 5, -1 \rangle, \][/tex]
[tex]\[ s = \langle 6, 0 \rangle, \][/tex]
[tex]\[ t = \langle -1, -3 \rangle. \][/tex]

We need to perform the following operations: \( 2r + 4s - 7t \).

### Step 1: Scale each vector
First, we scale each vector by their respective coefficients:

[tex]\[ 2r = 2 \times \langle 5, -1 \rangle = \langle 10, -2 \rangle, \][/tex]

[tex]\[ 4s = 4 \times \langle 6, 0 \rangle = \langle 24, 0 \rangle, \][/tex]

[tex]\[ 7t = 7 \times \langle -1, -3 \rangle = \langle -7, -21 \rangle. \][/tex]

### Step 2: Add and subtract the scaled vectors
Next, we add the scaled vectors \( 2r \) and \( 4s \):

[tex]\[ \langle 10, -2 \rangle + \langle 24, 0 \rangle = \langle 10 + 24, -2 + 0 \rangle = \langle 34, -2 \rangle. \][/tex]

Then, we subtract the vector \( 7t \) from the result:

[tex]\[ \langle 34, -2 \rangle - \langle -7, -21 \rangle = \langle 34 - (-7), -2 - (-21) \rangle = \langle 34 + 7, -2 + 21 \rangle = \langle 41, 19 \rangle. \][/tex]

### Review of Aaron's Calculation
Aaron determined:

[tex]\[ 2r + 4s - 7t = \langle 41, -23 \rangle. \][/tex]

Comparing this with our correct calculation:

[tex]\[ 2r + 4s - 7t = \langle 41, 19 \rangle. \][/tex]

We can see that Aaron's result for the y-component is incorrect.

### Error Analysis
Aaron made an error in his calculation:
- He added [tex]$\langle 10, -2 \rangle + \langle 24, 0 \rangle + \langle 7, -21 \rangle$[/tex] incorrectly.
- Specifically, he did not correctly distribute the negative sign when subtracting \( 7t \). Instead of subtracting \(\langle -7, -21 \rangle\), he effectively added it, causing the sign error in the y-component.

Therefore, the mistake is that he did not correctly distribute the negative when subtracting [tex]\( 7t \)[/tex].