Certainly! Let's solve this step-by-step.
Given:
- \( a = \) the vertical change
- \( b = \) the horizontal change
From the results:
\( a = 0 \)
[tex]\[ \boxed{0} \][/tex]
\( b = 0 \)
[tex]\[ \boxed{0} \][/tex]
Next, we substitute these values into the equation \( a^2 + b^2 = c^2 \) to solve for \( c \):
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Substituting \( a = 0 \) and \( b = 0 \):
[tex]\[ 0^2 + 0^2 = c^2 \][/tex]
[tex]\[ 0 + 0 = c^2 \][/tex]
[tex]\[ c^2 = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ c = \sqrt{0} \][/tex]
[tex]\[ c = 0.0 \][/tex]
Finally, rounding \( c \) to the tenth's place, we get:
[tex]\[ K_N = 0.0 \][/tex]
Thus:
[tex]\[ \boxed{0.0} \][/tex]