Which piecewise relation defines a function?

A. [tex]y=\left\{\begin{array}{cl}x^2, & x\ \textless \ -2 \\ 0, & -2 \leq x \leq 4 \\ -x^2, & x \geq 4\end{array}\right.[/tex]

B. [tex]y=\left\{\begin{array}{c}x^2, x \leq-2 \\ 4,-2\ \textless \ x \leq 2 \\ x^2+1, x \geq 2\end{array}\right.[/tex]

C. [tex]y=\left\{\begin{aligned}-3 x, & x\ \textless \ -2 \\ 3, & 0 \leq x\ \textless \ 4 \\ 2 x, & x \geq 4\end{aligned}\right.[/tex]

D. [tex]y=\left\{\begin{aligned}-3 x, & x \leq-4 \\ 3, & -5\ \textless \ x\ \textless \ 1 \\ 2 x, & x \geq 1\end{aligned}\right.[/tex]



Answer :

To determine which piecewise relations define functions, we need to ensure that each relation gives exactly one output \( y \) value for each input \( x \) value. Let's analyze each relation individually step-by-step:

### Relation 1
[tex]\[ y = \begin{cases} x^2, & x < -2 \\ 0, & -2 \leq x \leq 4 \\ -x^2, & x \geq 4 \end{cases} \][/tex]

1. For \( x < -2 \), \( y = x^2 \) has one value for each \( x \).
2. For \( -2 \leq x \leq 4 \), \( y = 0 \) is a single value for each \( x \).
3. For \( x \geq 4 \), \( y = -x^2 \) has one value for each \( x \).

Each segment of \( x \) provides a unique \( y \), which qualifies it as a function.

### Relation 2
[tex]\[ y = \begin{cases} x^2, & x \leq -2 \\ 4, & -2 < x \leq 2 \\ x^2 + 1, & x \geq 2 \end{cases} \][/tex]

1. For \( x \leq -2 \), \( y = x^2 \) has one value for each \( x \).
2. For \( -2 < x \leq 2 \), \( y = 4 \) is a single value for each \( x \).
3. For \( x \geq 2 \), \( y = x^2 + 1 \) has one value for each \( x \).

Each segment of \( x \) provides a unique \( y \), which qualifies it as a function.

### Relation 3
[tex]\[ y = \begin{cases} -3x, & x < -2 \\ 3, & 0 \leq x < 4 \\ 2x, & x \geq 4 \end{cases} \][/tex]

1. For \( x < -2 \), \( y = -3x \) has one value for each \( x \).
2. For \( 0 \leq x < 4 \), \( y = 3 \) is a single value for each \( x \).
3. For \( x \geq 4 \), \( y = 2x \) has one value for each \( x \).

Each segment of \( x \) provides a unique \( y \), which qualifies it as a function.

### Relation 4
[tex]\[ y = \begin{cases} -3x, & x \leq -4 \\ 3, & -5 < x < 1 \\ 2x, & x \geq 1 \end{cases} \][/tex]

1. For \( x \leq -4 \), \( y = -3x \) has one value for each \( x \).
2. For \( -5 < x < 1 \), \( y = 3 \) is a single value for each \( x \).
3. For \( x \geq 1 \), \( y = 2x \) has one value for each \( x \).

Each segment of \( x \) provides a unique \( y \), which qualifies it as a function.

### Conclusion
All four piecewise relations:
1. \( y = \begin{cases} x^2, & x < -2 \\ 0, & -2 \leq x \leq 4 \\ -x^2, & x \geq 4 \end{cases} \)
2. \( y = \begin{cases} x^2, & x \leq -2 \\ 4, & -2 < x \leq 2 \\ x^2 + 1, & x \geq 2 \end{cases} \)
3. \( y = \begin{cases} -3x, & x < -2 \\ 3, & 0 \leq x < 4 \\ 2x, & x \geq 4 \end{cases} \)
4. \( y = \begin{cases} -3x, & x \leq -4 \\ 3, & -5 < x < 1 \\ 2x, & x \geq 1 \end{cases} \)

define a function, as each of them provides exactly one [tex]\( y \)[/tex] value for each [tex]\( x \)[/tex] value.