Analizar y resolver cada problema:

1. ¿De cuántas maneras se pueden organizar 7 niños alrededor de una mesa redonda?

2. ¿Cuántos números de 3 cifras diferentes se pueden formar con los números del 1 al 5?

3. ¿De cuántas maneras puede organizar las letras de su apellido?

4. En un campeonato de microfútbol donde participan 8 equipos, ¿de cuántas maneras puede quedar la posición en la tabla de premiación, si se premia a los 3 primeros con más puntuaciones?

5. De un grupo de 15 personas, ¿cuántos grupos diferentes de 5 personas se pueden organizar?



Answer :

Final answer:

The solution addresses different combinatorial problems involving permutations and combinations, providing formulas and explanations for each scenario.


Explanation:

The number of ways to organize 7 children around a round table is given by (7-1)!, which is 6!. This is because the children can be arranged in a circle, giving 6 rotations of the same arrangement.

For numbers of 3 digits from 1 to 5, the total number of different combinations that can be formed is 543 = 60.

The number of ways to arrange the letters in one's last name depends on the specific letters in the name and their repetitions. For example, if the name is 'Smith,' there are 5! = 120 ways to arrange the letters.

In a micro soccer championship with 8 teams, the number of ways to determine the top 3 positions is 876 = 336 ways when order matters.

From a group of 15 people, the number of different groups of 5 people that can be formed is expressed as 15 choose 5, which is calculated as C(15, 5) = 3,003 different groups.


Learn more about Permutations and combinations here:

https://brainly.com/question/34452834