Answer :

Sure, let's solve the expression \(5x^3 + x^2 - 10x\) for \(x = 2\) step by step.

1. Substitute \(x = 2\) into the expression:
[tex]\[ 5(2)^3 + (2)^2 - 10(2) \][/tex]

2. Calculate each term individually:

- First term: \(5(2)^3\)
[tex]\[ (2)^3 = 2 \times 2 \times 2 = 8 \][/tex]
[tex]\[ 5 \times 8 = 40 \][/tex]

- Second term: \((2)^2\)
[tex]\[ (2)^2 = 2 \times 2 = 4 \][/tex]

- Third term: \(-10(2)\)
[tex]\[ -10 \times 2 = -20 \][/tex]

3. Combine the calculated terms:
[tex]\[ 40 + 4 - 20 \][/tex]

4. Perform the addition and subtraction:
[tex]\[ 40 + 4 = 44 \][/tex]
[tex]\[ 44 - 20 = 24 \][/tex]

The value of the expression [tex]\(5x^3 + x^2 - 10x\)[/tex] when [tex]\(x = 2\)[/tex] is [tex]\(\boxed{24}\)[/tex].