What is the density of a [tex]$700 \, \text{kg}[tex]$[/tex] object with a volume of [tex]$[/tex]649 \, \text{m}^3$[/tex]?

(Density: [tex]D=\frac{m}{v}[/tex])

A. [tex]0.927 \, \text{kg/m}^3[/tex]
B. [tex]4543 \, \text{kg/m}^3[/tex]
C. [tex]1.079 \, \text{kg/m}^3[/tex]
D. [tex]4.543 \, \text{kg/m}^3[/tex]



Answer :

To find the density of an object, we use the formula:
[tex]\[ D = \frac{m}{v} \][/tex]

Where:
- \( D \) is the density
- \( m \) is the mass of the object
- \( v \) is the volume of the object

Given:
- Mass (\( m \)) = 700 kg
- Volume (\( v \)) = 649 m\(^3\)

Plugging in the values, we get:
[tex]\[ D = \frac{700 \text{ kg}}{649 \text{ m}^3} \][/tex]

When we divide 700 by 649, the value we obtain for density is approximately:
[tex]\[ D \approx 1.078582434514638 \text{ kg/m}^3 \][/tex]

Rounding this value to three decimal places, we get:
[tex]\[ D \approx 1.079 \text{ kg/m}^3 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{1.079 \text{ kg/m}^3} \][/tex]