In your notebook, set up the following subtraction in a vertical format and select the correct answer.

Subtract \(-4 + 3a^2\) from \(7a - a^2\).

A. \(-4a^2 - 7a + 4\)

B. \(-4a^2 + 7a + 4\)

C. \(-4a^2 - 7a - 4\)

D. [tex]\(4a^2 + 7a + 4\)[/tex]



Answer :

Sure! Let's set up the subtraction of the two polynomials in a vertical format and work through it step-by-step.

We need to subtract \( -4 + 3a^2 \) from \( 7a - a^2 \).

First, let's write the polynomials in a standard form and stack them vertically:

[tex]\[ \begin{array}{r} 7a - a^2 \\ -( - 4 + 3a^2) \\ \end{array} \][/tex]

When we subtract polynomials, we change the sign of all the terms in the polynomial being subtracted and then combine like terms. Therefore:

Original:

[tex]\[ 7a - a^2 \][/tex]

Subtracting \(-4 + 3a^2\):

[tex]\[ -( - 4 + 3a^2 ) = 4 - 3a^2 \][/tex]

Now, line up and change the signs:

[tex]\[ \begin{array}{r} 7a - a^2 \\ 4 - 3a^2 \\ \end{array} \][/tex]

Combine like terms:

[tex]\[ \begin{array}{r} - a^2 - 3a^2 + 7a + 4 \\ = -4a^2 + 7a + 4 \end{array} \][/tex]

So, the result of subtracting \(-4 + 3a^2\) from \(7a - a^2\) is:

[tex]\[ -4a^2 + 7a + 4 \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{-4a^2 + 7a + 4} \][/tex]