Which of the following is a point-slope equation of a line that passes through the points [tex]$(10,5)[tex]$[/tex] and [tex]$[/tex](4,-7)$[/tex]?

A. [tex]$y - 5 = 2(x - 10)$[/tex]

B. [tex]$y - 5 = -2(x - 10)$[/tex]

C. [tex]$y - 10 = 2(x - 5)$[/tex]

D. [tex]$y - 10 = -2(x - 5)$[/tex]



Answer :

First, we need to find the slope \( m \) of the line that passes through the points \((10, 5)\) and \((4, -7)\). The formula for the slope between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Substituting the given points into the formula:

[tex]\[ m = \frac{-7 - 5}{4 - 10} = \frac{-12}{-6} = 2 \][/tex]

Now, we use the point-slope form of the equation of a line, which is:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

We can use either of the given points \((10, 5)\) or \((4, -7)\) in the point-slope form. Let's use \((10, 5)\):

[tex]\[ y - 5 = 2(x - 10) \][/tex]

We check this with the given options:
A. \(y - 5 = 2(x - 10)\)
B. \(y - 5 = -2(x - 10)\)
C. \(y - 10 = 2(x - 5)\)
D. \(y - 10 = -2(x - 5)\)

The correct option that matches our point-slope equation is:

[tex]\[ \boxed{A} \][/tex]