Drag the tiles to the boxes to form correct pairs.

Match the pairs of equivalent expressions.

1. \(\left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right)\)
2. \(4 b+\frac{13}{2}\)
3. \((5+2 b)+\left(2 b+\frac{3}{2}\right)\)
4. \(8 b-15\)
5. \(\left(\frac{7}{2} b-3\right)-(8+6 b)\)
6. \(\frac{-5}{2} b-11\)
7. \((-10+b)+(7 b-5)\)
8. \(-15-\frac{5}{2} b\)

\(\square\)

[tex]\(\square\)[/tex]



Answer :

Sure! Let's match the pairs of equivalent expressions based on our calculations:

1. \(\left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right)\)

This simplifies to \(-15 - \frac{5}{2}b\).

2. \(4 b+\frac{13}{2}\)

This simplifies to \(4 b + \frac{13}{2}\).

3. \((5+2 b)+\left(2 b+\frac{3}{2}\right)\)

This simplifies to \(4 b + \frac{13}{2}\).

4. \(8 b-15\)

This simplifies to \(8 b - 15\).

5. \(\left(\frac{7}{2} b-3\right)-(8+6 b)\)

This simplifies to \(-15 - \frac{5}{2}b\).

6. \(\frac{-5}{2} b-11\)

Not immediately seen; observe carefully.

7. \((-10+b)+(7 b-5)\)

This simplifies to \(8 b - 15\).

8. \(-15-\frac{5}{2} b\)

This simplifies to \(-15 - \frac{5}{2}b\).

Now pair the equivalent expressions:

- \(\left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right)\) pairs with \(-15-\frac{5}{2} b\)

- \(4 b+\frac{13}{2}\) pairs with \((5+2 b)+\left(2 b+\frac{3}{2}\right)\)

- \(8 b-15\) pairs with \((-10+b)+(7 b-5)\)

- \(\left(\frac{7}{2} b-3\right)-(8+6 b)\) pairs with \(-15-\frac{5}{2} b\)

- \(\frac{-5}{2} b-11\) is unpaired

So, the matching pairs are:

[tex]\[ \boxed{(-14+\frac{3}{2} b)-(1+\frac{8}{2} b)}, \boxed{-15-\frac{5}{2} b} \][/tex]
[tex]\[ \boxed{4 b+\frac{13}{2}}, \boxed{(5+2 b)+(2 b+\frac{3}{2})} \][/tex]
[tex]\[ \boxed{8 b-15}, \boxed{(-10+b)+(7 b-5)} \][/tex]
[tex]\[ \boxed{(-14+\frac{3}{2} b)-(1+\frac{8}{2} b)}, \boxed{(-15-\frac{5}{2} b)} \][/tex]

And the [tex]\(\frac{-5}{2} b - 11\)[/tex] does not have a match in this given set.