To solve the expression \( w^2 + 3w - 11 \) when \( w = -5 \), let's go step by step:
1. First, substitute \( w \) with \(-5\) in the expression:
[tex]\[ (-5)^2 + 3(-5) - 11 \][/tex]
2. Compute \((-5)^2\):
[tex]\[ (-5)^2 = 25 \][/tex]
3. Compute \(3(-5)\):
[tex]\[ 3(-5) = -15 \][/tex]
4. Now, substitute these values back into the expression:
[tex]\[ 25 + (-15) - 11 \][/tex]
5. Perform the addition and subtraction:
[tex]\[ 25 - 15 - 11 \][/tex]
6. First, subtract 15 from 25:
[tex]\[ 25 - 15 = 10 \][/tex]
7. Now, subtract 11 from 10:
[tex]\[ 10 - 11 = -1 \][/tex]
So, the value of the expression when \( w = -5 \) is \(-1\).
Therefore, the correct answer is:
D. -1