To find the area of a circle, you can use the formula:
[tex]\[ \text{Area} = \pi \times (\text{radius})^2 \][/tex]
Given that the radius of the circle is \( 6 \) feet, you substitute the radius into the formula:
[tex]\[ \text{Area} = \pi \times (6)^2 \][/tex]
First, calculate the square of the radius:
[tex]\[ (6)^2 = 36 \][/tex]
Then multiply this result by \(\pi\):
[tex]\[ \text{Area} = \pi \times 36 = 36 \pi \][/tex]
So, the area of the circle with a radius of 6 feet is:
[tex]\[ \boxed{36 \pi \, \text{ft}^2} \][/tex]
Among the given options:
- \( 6 \pi \, \text{ft}^2 \)
- \( 9 \pi \, \text{ft}^2 \)
- \( 36 \pi \, \text{ft}^2 \)
- \( 72 \pi \, \text{ft}^2 \)
The correct choice is:
[tex]\[ 36 \pi \, \text{ft}^2 \][/tex]