Type the correct answer in each box. Use numerals instead of words.

What is the inverse of this function?

[tex]f(x)=-\frac{1}{2} \sqrt{x+3}, \ x \geq -3[/tex]

[tex]f^{-1}(x) = \ \square \ x^2 - \ \square \ , \ \text{for} \ x \leq \ \square[/tex]



Answer :

To find the inverse \( f^{-1}(x) \) of the function \( f(x) = -\frac{1}{2} \sqrt{x + 3} \) where \( x \geq -3 \), we need to follow these steps:

1. Express the function in terms of \( y \):
[tex]\[ y = -\frac{1}{2} \sqrt{x + 3} \][/tex]

2. Solve for \( x \) in terms of \( y \):
[tex]\[ y = -\frac{1}{2} \sqrt{x + 3} \][/tex]
Multiply both sides by \(-2\):
[tex]\[ -2y = \sqrt{x + 3} \][/tex]
Square both sides to eliminate the square root:
[tex]\[ (-2y)^2 = x + 3 \][/tex]
Simplify:
[tex]\[ 4y^2 = x + 3 \][/tex]
Solve for \( x \):
[tex]\[ x = 4y^2 - 3 \][/tex]

3. Write the inverse function:
When solving for the inverse function, replace \( y \) with \( x \):
[tex]\[ f^{-1}(x) = 4x^2 - 3 \][/tex]

4. Determine the domain of the inverse function:
The domain of \( f^{-1}(x) \) is the range of the original function \( f(x) \).

For \( f(x) = -\frac{1}{2} \sqrt{x + 3} \), where \( x \geq -3 \), we find the range by checking the end behavior of \( f(x) \):
- When \( x = -3 \), \( f(-3) = -\frac{1}{2} \sqrt{0} = 0 \).
- As \( x \to \infty \), \( f(x) \to -\infty \) since the square root function increases without bound but is scaled and reflected.

Therefore, the range of \( f(x) \) is \( (-\infty, 0] \). This range becomes the domain of the inverse function \( f^{-1}(x) \).

So, the inverse function is given by:
[tex]\[ f^{-1}(x) = 4x^2 - 3 \quad \text{for} \quad x \leq 0 \][/tex]

Thus, the correct answers to fill in the boxes are:
[tex]\[ f^{-1}(x) = 4x^2 - 3, \text{ for } x \leq 0 \][/tex]