Consider the table of the powers of 8.
\begin{tabular}{|c|}
\hline Powers of 8 \\
\hline [tex]$8^3=512$[/tex] \\
\hline [tex]$8^2=64$[/tex] \\
\hline [tex]$8^1=8$[/tex] \\
\hline [tex]$8^0=a$[/tex] \\
\hline [tex]$8^{-1}=b$[/tex] \\
\hline [tex]$8^{-2}=c$[/tex] \\
\hline
\end{tabular}

Answer these questions about the powers of 8:

1. What is the pattern as the exponents decrease?

2. What is the value of each variable in the table?
- [tex]$a=$[/tex] [tex]$\square$[/tex]
- [tex]$b=$[/tex] [tex]$\square$[/tex]
- [tex]$c=$[/tex] [tex]$\square$[/tex]



Answer :

Let's consider the given table of the powers of 8:
[tex]\[ \begin{tabular}{|c|} \hline Powers of 8 \\ \hline [tex]$8^3=512$[/tex] \\
\hline [tex]$8^2=64$[/tex] \\
\hline [tex]$8^1=8$[/tex] \\
\hline [tex]$8^0=a$[/tex] \\
\hline [tex]$8^{-1}=b$[/tex] \\
\hline [tex]$8^{-2}=c$[/tex] \\
\hline
\end{tabular}
\][/tex]

### Pattern as the Exponents Decrease:

To identify the pattern, let’s look at how the values change as the exponents decrease by 1:

- Starting from \(8^3 = 512\):
- Going from \(8^3\) to \(8^2\):
[tex]\[ 512 \div 8 = 64 \][/tex]
- Going from \(8^2\) to \(8^1\):
[tex]\[ 64 \div 8 = 8 \][/tex]

We notice that each time the exponent decreases by 1, the value is divided by 8.

Following this pattern:

- For \(8^0\), we divide \(8^1\) by 8:
[tex]\[ 8^0 = \frac{8}{8} = 1 \][/tex]

- For \(8^{-1}\), we divide \(8^0\) by 8:
[tex]\[ 8^{-1} = \frac{1}{8} = 0.125 \][/tex]

- For \(8^{-2}\), we divide \(8^{-1}\) by 8:
[tex]\[ 8^{-2} = \frac{0.125}{8} = 0.015625 \][/tex]

### Values of Each Variable:

Based on the identified pattern, we can now determine the values of \(a\), \(b\), and \(c\):

- \(a = 8^0 = 1\)
- \(b = 8^{-1} = 0.125\)
- \(c = 8^{-2} = 0.015625\)

So, the values of each variable are:

[tex]\[ a = 1 \][/tex]

[tex]\[ b = 0.125 \][/tex]

[tex]\[ c = 0.015625 \][/tex]