Simplify the expression to simplest radical form.

[tex]
\frac{6}{\sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}}
[/tex]

Enter the correct answer in the box.



Answer :

Certainly! To simplify the expression \(\frac{6}{\sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}}\), let's go through the steps in detail:

1. Combine the fractions:
[tex]\[ \frac{6 \cdot \sqrt{2}}{\sqrt{3} \cdot \sqrt{3}} \][/tex]

2. Multiply the terms in the denominator:
[tex]\[ \sqrt{3} \cdot \sqrt{3} = 3 \][/tex]

3. So the expression now is:
[tex]\[ \frac{6 \cdot \sqrt{2}}{3} \][/tex]

4. Simplify the fraction \(\frac{6}{3}\):
[tex]\[ \frac{6 \cdot \sqrt{2}}{3} = 2 \cdot \sqrt{2} \][/tex]

5. Calculate the value of \( \sqrt{2} \):
[tex]\[ \sqrt{2} \approx 1.4142135623730951 \][/tex]

6. Calculate the final result:
[tex]\[ 2 \times 1.4142135623730951 \approx 2.8284271247461903 \][/tex]

So the simplified form of the expression \(\frac{6}{\sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}}\) is \(2\sqrt{2}\).

The numerical result is therefore:
[tex]\[ 2.8284271247461903 \][/tex]

Thus, [tex]\(\boxed{2\sqrt{2}}\)[/tex] is the simplest radical form of the given expression.