Find the solutions to [tex]$x^2=20$[/tex].

A. [tex]$x= \pm 2 \sqrt{10}$[/tex]

B. [tex]$x= \pm 10 \sqrt{2}$[/tex]

C. [tex]$x= \pm 5 \sqrt{2}$[/tex]

D. [tex]$x= \pm 2 \sqrt{5}$[/tex]



Answer :

To solve the equation \( x^2 = 20 \), we need to isolate \( x \) by taking the square root of both sides. Here is the step-by-step process:

1. Start with the given equation:
[tex]\[ x^2 = 20 \][/tex]

2. Take the square root of both sides to solve for \( x \):
[tex]\[ x = \pm \sqrt{20} \][/tex]

3. Simplify \(\sqrt{20}\). The number 20 can be factored into its prime factors:
[tex]\[ 20 = 4 \times 5 \][/tex]

4. Therefore, we can write:
[tex]\[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \sqrt{5} \][/tex]

5. Substitute back into the equation:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]

Thus, the solutions to the equation \( x^2 = 20 \) are:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]

Therefore, the correct answer from the given choices is

D. [tex]\( x = \pm 2 \sqrt{5} \)[/tex]