What is the following product?

[tex]\[ \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} \][/tex]

A. \( 4 x^2 \)

B. \(\sqrt[5]{16 x^4}\)

C. \( 2\left(\sqrt[5]{4 x^2}\right) \)

D. [tex]\( 16 x^4 \)[/tex]



Answer :

To solve the problem \( \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} \), we will follow these steps:

1. Rewrite the expressions using exponent notation:

The fifth root of a number \(a\) can be written as \(a^{1/5}\). So,
[tex]\[ \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \][/tex]

2. Multiply the expressions:

According to the rules of exponents, when you multiply two expressions with the same base, you add the exponents. Therefore,
[tex]\[ \sqrt[5]{4 x^2} \cdot \sqrt[5]{4 x^2} = (4 x^2)^{1/5} \cdot (4 x^2)^{1/5} = (4 x^2)^{1/5 + 1/5} = (4 x^2)^{2/5} \][/tex]

3. Simplify the exponent:

The exponent \(2/5\) indicates a power of 2 and a root of 5. We do not have to change this further. So our simplified expression remains:
[tex]\[ (4 x^2)^{2/5} \][/tex]

Given the multiple choices, it becomes clear that:
- \(4 x^2\) is not simplifying correctly the power roots.
- \(\sqrt[5]{16 x^4}\) simplifies accurately but doesn't match context wise.
- \(2\left(\sqrt[5]{4 x^2}\right)\) doubles up and falls.
- \(16 x^4\) is an over syntactical amplification.

The correct choice is:
[tex]\[ \boxed{(4 x^2)^{2/5}} \][/tex]