What is the value of [tex]$x$[/tex] in the equation [tex]\frac{1}{5} x - \frac{2}{3} y = 30[/tex], when [tex]y = 15[/tex]?



Answer :

To determine the value of \( x \) in the equation \(\frac{1}{5} x - \frac{2}{3} y = 30\) when \( y = 15 \), follow these steps:

1. Substitute \( y \) with 15 in the equation:

[tex]\[ \frac{1}{5} x - \frac{2}{3}(15) = 30 \][/tex]

2. Calculate \(\frac{2}{3}(15)\):

[tex]\[ \frac{2}{3} \times 15 = \frac{2 \times 15}{3} = \frac{30}{3} = 10 \][/tex]

Thus, the equation becomes:

[tex]\[ \frac{1}{5} x - 10 = 30 \][/tex]

3. Isolate \(\frac{1}{5} x\) by adding 10 to both sides:

[tex]\[ \frac{1}{5} x = 30 + 10 \][/tex]

[tex]\[ \frac{1}{5} x = 40 \][/tex]

4. Solve for \( x \) by multiplying both sides by 5:

[tex]\[ x = 40 \times 5 \][/tex]

[tex]\[ x = 200 \][/tex]

So, the value of [tex]\( x \)[/tex] when [tex]\( y = 15 \)[/tex] is [tex]\(\boxed{200}\)[/tex].