Answer :

Sure, let's find the product of the given expressions and then simplify it.

Given expressions:
[tex]\[ (2b - 2)(4b - 3) \][/tex]

Step 1: Expand the expression using the distributive property (FOIL method).
This means that each term in the first bracket should be multiplied by each term in the second bracket.

[tex]\[ (2b - 2)(4b - 3) \][/tex]
[tex]\[ = (2b \cdot 4b) + (2b \cdot -3) + (-2 \cdot 4b) + (-2 \cdot -3) \][/tex]

Now, compute each multiplication separately:
1. \( 2b \cdot 4b = 8b^2 \)
2. \( 2b \cdot -3 = -6b \)
3. \( -2 \cdot 4b = -8b \)
4. \( -2 \cdot -3 = 6 \)

Step 2: Combine like terms.
[tex]\[ 8b^2 - 6b - 8b + 6 \][/tex]
[tex]\[ = 8b^2 - 14b + 6 \][/tex]

Therefore, the expanded and simplified form of the product is:
[tex]\[ 8b^2 - 14b + 6 \][/tex]

A further simplification can also be:

[tex]\[ 2(b - 1)(4b - 3) \][/tex]

Thus, the final simplified answer to the multiplication of the expressions \((2b - 2)\) and \((4b - 3)\) is:
[tex]\[ \boxed{2(b-1)(4b-3)} \][/tex]