Answer :

To find the limit \(\lim _{h \rightarrow 0} h^2\left(1+\frac{1}{h^2}\right)\), follow these steps:

1. Express the function \(f(h)\):
[tex]\[ f(h) = h^2 \left(1 + \frac{1}{h^2}\right) \][/tex]

2. Simplify the expression inside the limit:
[tex]\[ f(h) = h^2 \left(1 + \frac{1}{h^2}\right) \][/tex]
Distribute \(h^2\) across the terms inside the parentheses:
[tex]\[ f(h) = h^2 \cdot 1 + h^2 \cdot \frac{1}{h^2} \][/tex]
This simplifies to:
[tex]\[ f(h) = h^2 + 1 \][/tex]

3. Evaluate the limit as \(h\) approaches 0:
Now, we need to find the limit of the simplified expression:
[tex]\[ \lim_{h \to 0} (h^2 + 1) \][/tex]

4. Substitute \(h = 0\) in the simplified function:
As \(h\) approaches 0:
[tex]\[ h^2 \to 0^2 = 0 \][/tex]
Therefore:
[tex]\[ h^2 + 1 \to 0 + 1 = 1 \][/tex]

So, the limit is:
[tex]\[ \lim_{h \to 0} h^2 \left(1 + \frac{1}{h^2}\right) = 1 \][/tex]