Two samples, each with [tex]n=9[/tex] scores, produce an independent-measures [tex]t[/tex] statistic of [tex]t=2.00[/tex]. If the effect size is measured using [tex]r^2[/tex], what is the value of [tex]r^2[/tex]?

A. [tex]\frac{4}{16}[/tex]
B. [tex]\frac{4}{20}[/tex]
C. [tex]\frac{2}{16}[/tex]
D. [tex]\frac{2}{18}[/tex]



Answer :

To determine the value of \( r^2 \) given the independent-measures \( t \) statistic and the sample size, we will go through the following steps:

1. Determine the degrees of freedom (df):
For independent-measures \( t \)-tests, the degrees of freedom are calculated based on the sample size minus one for each group. Since there are two samples, the total degrees of freedom is:
[tex]\[ df = (n - 1) + (n - 1) = 2(n - 1) \][/tex]
Given \( n = 9 \), we have:
[tex]\[ df = 2(9 - 1) = 2 \cdot 8 = 16 \][/tex]

2. Calculate \( r^2 \):
The effect size \( r^2 \) is calculated using the formula:
[tex]\[ r^2 = \frac{t^2}{t^2 + df} \][/tex]
Given \( t = 2.00 \) and \( df = 16 \), we can substitute these values into the formula:
[tex]\[ r^2 = \frac{2.00^2}{2.00^2 + 16} \][/tex]
Calculate \( t^2 \):
[tex]\[ 2.00^2 = 4 \][/tex]
Substitute back into the formula:
[tex]\[ r^2 = \frac{4}{4 + 16} = \frac{4}{20} \][/tex]

3. Compare with the given choices:
From the answer choices provided:
[tex]\[ A. \frac{4}{16} \][/tex]
[tex]\[ B. \frac{4}{20} \][/tex]
[tex]\[ C. \frac{2}{16} \][/tex]
[tex]\[ D. \frac{2}{18} \][/tex]
You can see that the correct match for the computed \( r^2 = \frac{4}{20} \).

Therefore, the correct answer is [tex]\( B \)[/tex].