Find the value of [tex]$y[tex]$[/tex] that makes the equation [tex]$[/tex]2y = 12 - 5x[tex]$[/tex] true when [tex]$[/tex]x = -2$[/tex].

A) 1
B) 2
C) 11
D) 22



Answer :

Sure, let's solve the equation \(2y = 12 - 5x\) for \(y\) when \(x = -2\).

1. Substitute \(x = -2\) into the equation:
[tex]\[ 2y = 12 - 5(-2) \][/tex]

2. Calculate \(5(-2)\):
[tex]\[ 5 \times -2 = -10 \][/tex]
Since \( 5 \times -2 \) equals \(-10\),

3. Substitute the result of \(5(-2)\) back into the equation:
[tex]\[ 2y = 12 - (-10) \][/tex]

4. Simplify the right-hand side of the equation:
[tex]\[ 12 - (-10) = 12 + 10 = 22 \][/tex]
So now the equation is:
[tex]\[ 2y = 22 \][/tex]

5. Solve for \(y\) by dividing both sides of the equation by 2:
[tex]\[ y = \frac{22}{2} \][/tex]

6. Calculate the division:
[tex]\[ y = 11 \][/tex]

Therefore, the value of \(y\) that satisfies the equation \(2 y = 12 - 5 x\) when \(x = -2\) is \( y = 11\).

The correct answer is:
C) 11