Which of the following points lies on the graph of this equation?

[tex]\[ y = \frac{3}{2} x - 4 \][/tex]

A) \((-2, -2)\)

B) \((-2, -4)\)

C) \((2, -1)\)

D) [tex]\((2, 1)\)[/tex]



Answer :

To determine which points lie on the graph of the equation \( y = \frac{3}{2} x - 4 \), we can substitute the \( x \) and \( y \) coordinates of each given point into the equation and see if the resulting equality holds true.

Let's evaluate each given point:

Point A \((-2, -2)\):
1. Substitute \( x = -2 \) into the equation:
[tex]\[ y = \frac{3}{2} (-2) - 4 \][/tex]
2. Calculate the right-hand side:
[tex]\[ y = -3 - 4 = -7 \][/tex]
3. Compare with the \( y \)-coordinate of the point, which is \( -2 \).
[tex]\[ -7 \neq -2 \][/tex]
Thus, point A \((-2, -2)\) does not lie on the graph.

Point B \((-2, -4)\):
1. Substitute \( x = -2 \) into the equation:
[tex]\[ y = \frac{3}{2} (-2) - 4 \][/tex]
2. Calculate the right-hand side:
[tex]\[ y = -3 - 4 = -7 \][/tex]
3. Compare with the \( y \)-coordinate of the point, which is \( -4 \).
[tex]\[ -7 \neq -4 \][/tex]
Thus, point B \((-2, -4)\) does not lie on the graph.

Point C \((2, -1)\):
1. Substitute \( x = 2 \) into the equation:
[tex]\[ y = \frac{3}{2} (2) - 4 \][/tex]
2. Calculate the right-hand side:
[tex]\[ y = 3 - 4 = -1 \][/tex]
3. Compare with the \( y \)-coordinate of the point, which is \( -1 \).
[tex]\[ -1 = -1 \][/tex]
Thus, point C \((2, -1)\) lies on the graph.

Point D \((2, 1)\):
1. Substitute \( x = 2 \) into the equation:
[tex]\[ y = \frac{3}{2} (2) - 4 \][/tex]
2. Calculate the right-hand side:
[tex]\[ y = 3 - 4 = -1 \][/tex]
3. Compare with the \( y \)-coordinate of the point, which is \( 1 \).
[tex]\[ -1 \neq 1 \][/tex]
Thus, point D \((2, 1)\) does not lie on the graph.

So, the point that lies on the graph of the equation \( y = \frac{3}{2} x - 4 \) is:
C) [tex]\((2, -1)\)[/tex].