What is the slope of the line that contains the points [tex](-1,2)[/tex] and [tex](3,3)[/tex]?

A. [tex]-\frac{1}{4}[/tex]
B. 4
C. [tex]\frac{1}{4}[/tex]
D. -4



Answer :

To find the slope of the line that passes through the points \((-1,2)\) and \((3,3)\), we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, \((x_1, y_1) = (-1, 2)\) and \((x_2, y_2) = (3, 3)\).

Substituting these values into the formula gives:

[tex]\[ m = \frac{3 - 2}{3 - (-1)} \][/tex]

First, let's calculate the numerator (\(y_2 - y_1\)):

[tex]\[ 3 - 2 = 1 \][/tex]

Next, calculate the denominator (\(x_2 - x_1\)):

[tex]\[ 3 - (-1) = 3 + 1 = 4 \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m = \frac{1}{4} \][/tex]

So, the slope of the line that contains the points \((-1, 2)\) and \((3, 3)\) is \(\frac{1}{4}\).

Therefore, the correct answer is:
C. [tex]\(\frac{1}{4}\)[/tex]