Answer :

To complete the square for the given quadratic expression \( x^2 + 12x + 44 \), let's follow these steps:

1. Start with the original quadratic expression:
[tex]\[ x^2 + 12x + 44 \][/tex]

2. Isolate the quadratic and linear terms:
[tex]\[ x^2 + 12x \][/tex]

3. To complete the square, take the coefficient of \( x \), which is 12, divide it by 2, and then square the result:
[tex]\[ \left(\frac{12}{2}\right)^2 = 6^2 = 36 \][/tex]

4. Add and subtract this squared value (36) inside the expression:
[tex]\[ x^2 + 12x + 36 - 36 + 44 \][/tex]

5. Group the perfect square trinomial and the constants separately:
[tex]\[ (x^2 + 12x + 36) + (-36 + 44) \][/tex]

6. Rewrite the perfect square trinomial as a binomial square:
[tex]\[ (x + 6)^2 + (-36 + 44) \][/tex]

7. Simplify the constants:
[tex]\[ -36 + 44 = 8 \][/tex]

8. So, the completed square form of the quadratic expression is:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]

Thus, filling in the gap in the equation, we have:
[tex]\[ x^2 + 12x + 44 = (x + 6)^2 + 8 \][/tex]

The value that completes the square is [tex]\( \boxed{8} \)[/tex].