Answer :
Sure, let’s solve the given problem step by step.
We are given the function:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]
We need to find \( f(x) \) when \( x = 3 \).
1. Substitute \( x = 3 \) into the function:
[tex]\[ f(3) = 2(3)^2 + 1 \][/tex]
2. Calculate the exponent:
[tex]\[ (3)^2 = 9 \][/tex]
3. Multiply by the coefficient 2:
[tex]\[ 2 \times 9 = 18 \][/tex]
4. Add 1 to the result:
[tex]\[ 18 + 1 = 19 \][/tex]
Therefore, \( f(3) \) is 19.
So the correct answer is:
[tex]\[ 19 \][/tex]
We are given the function:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]
We need to find \( f(x) \) when \( x = 3 \).
1. Substitute \( x = 3 \) into the function:
[tex]\[ f(3) = 2(3)^2 + 1 \][/tex]
2. Calculate the exponent:
[tex]\[ (3)^2 = 9 \][/tex]
3. Multiply by the coefficient 2:
[tex]\[ 2 \times 9 = 18 \][/tex]
4. Add 1 to the result:
[tex]\[ 18 + 1 = 19 \][/tex]
Therefore, \( f(3) \) is 19.
So the correct answer is:
[tex]\[ 19 \][/tex]
Answer:
hello
Step-by-step explanation:
If f(x) = 2x²+1
f(3)= 2*(3)²+1
=2*9 +1
=18+1
=19
if f(x)=2x²+1 f(x) when x=3 is : 19