Answer :
To determine the value of \( x \) when \( f(x) = -3 \), follow these steps:
1. Examine the given table to identify the corresponding \( x \)-value for \( f(x) = -3 \):
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -66 \\ \hline -3 & -29 \\ \hline -2 & -10 \\ \hline -1 & -3 \\ \hline 0 & -2 \\ \hline 1 & -1 \\ \hline 2 & 6 \\ \hline \end{array} \][/tex]
2. Look through the rows of the table until we find the row where \( f(x) \) equals \(-3\).
Upon reviewing the table:
- For \( x = -4 \), \( f(x) = -66 \)
- For \( x = -3 \), \( f(x) = -29 \)
- For \( x = -2 \), \( f(x) = -10 \)
- For \( x = -1 \), \( f(x) = -3 \)
- For \( x = 0 \), \( f(x) = -2 \)
- For \( x = 1 \), \( f(x) = -1 \)
- For \( x = 2 \), \( f(x) = 6 \)
3. We observe that when \( f(x) = -3 \), the corresponding \( x \)-value is \( -1 \).
Consequently, the value of \( x \) when \( f(x) = -3 \) is:
[tex]\[ \boxed{-1} \][/tex]
1. Examine the given table to identify the corresponding \( x \)-value for \( f(x) = -3 \):
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -66 \\ \hline -3 & -29 \\ \hline -2 & -10 \\ \hline -1 & -3 \\ \hline 0 & -2 \\ \hline 1 & -1 \\ \hline 2 & 6 \\ \hline \end{array} \][/tex]
2. Look through the rows of the table until we find the row where \( f(x) \) equals \(-3\).
Upon reviewing the table:
- For \( x = -4 \), \( f(x) = -66 \)
- For \( x = -3 \), \( f(x) = -29 \)
- For \( x = -2 \), \( f(x) = -10 \)
- For \( x = -1 \), \( f(x) = -3 \)
- For \( x = 0 \), \( f(x) = -2 \)
- For \( x = 1 \), \( f(x) = -1 \)
- For \( x = 2 \), \( f(x) = 6 \)
3. We observe that when \( f(x) = -3 \), the corresponding \( x \)-value is \( -1 \).
Consequently, the value of \( x \) when \( f(x) = -3 \) is:
[tex]\[ \boxed{-1} \][/tex]