The table represents a function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-6 & 8 \\
\hline
7 & 3 \\
\hline
4 & -5 \\
\hline
3 & -2 \\
\hline
-5 & 12 \\
\hline
\end{tabular}

Which value is an output of the function?

A. [tex]$-6$[/tex]
B. [tex]$-2$[/tex]
C. 4
D. 7



Answer :

To determine which values are outputs of the given function, we need to look at the function's output values for the given inputs.

The table provided shows the following \( x \) and \( f(x) \) pairs:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -6 & 8 \\ \hline 7 & 3 \\ \hline 4 & -5 \\ \hline 3 & -2 \\ \hline -5 & 12 \\ \hline \end{array} \][/tex]

So the provided outputs from the function \( f(x) \) are:
\( 8, 3, -5, -2, 12 \).

Next, we need to determine whether each given value is present in this list of outputs:

- Checking if \(-6\) is an output: \( -6 \) is not found in the list of outputs.
- Checking if \(-2\) is an output: \(-2\) is found in the list of outputs.
- Checking if \(4\) is an output: \( 4 \) is not found in the list of outputs.
- Checking if \( 7 \) is an output: \( 7 \) is not found in the list of outputs.

Thus, the only value that is an output of the function among the given options is [tex]\( \boxed{-2} \)[/tex].