The table represents a function.

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -4 & -2 \\
\hline -1 & 5 \\
\hline 3 & 4 \\
\hline 5 & -8 \\
\hline
\end{tabular}

What is [tex]$f(5)$[/tex]?

A. [tex]$-8$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 8



Answer :

To find the value of the function \( f \) at \( x = 5 \), we need to look at the table and find the corresponding function value. Here is the table for reference:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -2 \\ \hline -1 & 5 \\ \hline 3 & 4 \\ \hline 5 & -8 \\ \hline \end{array} \][/tex]

We need to locate the row where \( x = 5 \) and find the corresponding value of \( f(x) \):

- For \( x = -4 \), \( f(x) = -2 \)
- For \( x = -1 \), \( f(x) = 5 \)
- For \( x = 3 \), \( f(x) = 4 \)
- For \( x = 5 \), \( f(x) = -8 \)

From the table, we see that when \( x = 5 \), \( f(x) = -8 \).

Therefore, \( f(5) = -8 \).

The correct answer is:
[tex]\[ \boxed{-8} \][/tex]