Answer :
To determine the value of \(\frac{5}{9}\) rounded to the nearest half, follow these steps:
1. Calculate the decimal value of \(\frac{5}{9}\):
[tex]\[ \frac{5}{9} \approx 0.5555555555555556 \][/tex]
2. Round this decimal value to the nearest half:
- First, multiply the decimal by 2:
[tex]\[ 0.5555555555555556 \times 2 \approx 1.1111111111111112 \][/tex]
- Now, round 1.1111111111111112 to the nearest whole number. The closest whole number to 1.1111111111111112 is 1.
- Next, divide the rounded result by 2:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]
Therefore, \(\frac{5}{9}\) rounded to the nearest half is \(0.5\).
So, [tex]\(\frac{5}{9} \approx 0.5555555555555556\)[/tex] in decimal form, and it rounds to [tex]\(0.5\)[/tex] when rounded to the nearest half.
1. Calculate the decimal value of \(\frac{5}{9}\):
[tex]\[ \frac{5}{9} \approx 0.5555555555555556 \][/tex]
2. Round this decimal value to the nearest half:
- First, multiply the decimal by 2:
[tex]\[ 0.5555555555555556 \times 2 \approx 1.1111111111111112 \][/tex]
- Now, round 1.1111111111111112 to the nearest whole number. The closest whole number to 1.1111111111111112 is 1.
- Next, divide the rounded result by 2:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]
Therefore, \(\frac{5}{9}\) rounded to the nearest half is \(0.5\).
So, [tex]\(\frac{5}{9} \approx 0.5555555555555556\)[/tex] in decimal form, and it rounds to [tex]\(0.5\)[/tex] when rounded to the nearest half.