\begin{tabular}{|c|c|}
\hline
\begin{tabular}{l}
7. [tex]$\left(\sqrt{1+d^2}\right)^2+\left(\sqrt{e^2+1}\right)^2=$[/tex] ?
\end{tabular} & Pythagorean theorem \\
\hline
\begin{tabular}{l}
\begin{aligned}
\left(1+d^2\right)+\left(e^2+1\right) & =d^2-2 d e+e^2 \\
2+d^2+e^2 & =d^2-2 d e+e^2 \\
2 & =-2 d e \\
-1 & =d e
\end{aligned}
\end{tabular} & simplify \\
\hline
9. [tex]$-1=m_{ AB } m_{ BC }$[/tex] & substitution property of equality \\
\hline
\end{tabular}

Which expression is missing from step 7?

A. [tex]$A^2+B^2$[/tex] \\
B. [tex]$(A+B)^2$[/tex] \\
C. [tex]$(d-e)^2$[/tex] \\
D. [tex]$-2 d e$[/tex]



Answer :

Let's break down the problem step by step to identify the missing expression in step 7.

We start with the given expression:
[tex]\[ \left(\sqrt{1+d^2}\right)^2 + \left(\sqrt{e^2+1}\right)^2 \][/tex]

First, we simplify the expression:
[tex]\[ \left(\sqrt{1+d^2}\right)^2 + \left(\sqrt{e^2+1}\right)^2 = (1 + d^2) + (e^2 + 1) \][/tex]
This simplifies further to:
[tex]\[ 1 + d^2 + e^2 + 1 = 2 + d^2 + e^2 \][/tex]

Next, compare the simplified expression with the right side of the equation in the problem statement:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]

Subtracting \(d^2 + e^2\) from both sides:
[tex]\[ 2 = -2de \][/tex]

Dividing both sides by \(-2\):
[tex]\[ -1 = de \][/tex]

To understand better which expression fits into the given context, let's consider the missing relation that transforms the given expressions into a form that matches the expanded equation \(d^2 - 2de + e^2\). Notice that:
[tex]\[ d^2 - 2de + e^2 = (d - e)^2 \][/tex]

Thus, the transformation from \((1 + d^2) + (e^2 + 1)\) to \(d^2 - 2de + e^2\) implies a perfect square. Therefore, the missing expression must look like:
[tex]\[ (d - e)^2 \][/tex]

So, analyzing the options:
A. \(A^2+B^2\) does not involve \(de\) term.
B. \((A+B)^2\) expands to \(A^2 + 2AB + B^2\) - not matching our required transformation with a negative sign.
C. \((d-e)^2\) correctly expands to \(d^2 - 2de + e^2\).
D. \(-2de\) is part of the expansion but not the whole expression.

Therefore, the missing expression from step 7 is:
[tex]\[ \boxed{(d - e)^2} \][/tex]