What is the value of the expression? [tex]-\frac{3}{8} \cdot \frac{2}{5}[/tex]

F. [tex]-\frac{20}{3}[/tex]

G. [tex]-\frac{16}{15}[/tex]

H. [tex]-\frac{15}{10}[/tex]

I. [tex]-\frac{3}{20}[/tex]



Answer :

To solve the expression \(-\frac{3}{8} \cdot \frac{2}{5}\), follow these steps:

1. Multiply the numerators: The numerators are \(-3\) and \(2\). When you multiply these together, you get:

[tex]\[ -3 \times 2 = -6 \][/tex]

2. Multiply the denominators: The denominators are \(8\) and \(5\). When you multiply these together, you get:

[tex]\[ 8 \times 5 = 40 \][/tex]

3. Form the new fraction: Combine the results from the previous steps to form the new fraction:

[tex]\[ -\frac{6}{40} \][/tex]

4. Simplify the fraction: Find the greatest common divisor (GCD) of 6 and 40 to simplify the fraction. The GCD of 6 and 40 is 2. Divide both the numerator and the denominator by 2:

[tex]\[ \frac{-6 \div 2}{40 \div 2} = \frac{-3}{20} \][/tex]

So, the simplified value of the expression \(-\frac{3}{8} \cdot \frac{2}{5}\) is:

[tex]\[ \boxed{-\frac{3}{20}} \][/tex]