Identify the class width for the given frequency distribution.

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Weight \\
(lbs)
\end{tabular} & Frequency \\
\hline [tex]$200-204$[/tex] & 6 \\
\hline [tex]$205-209$[/tex] & 5 \\
\hline [tex]$210-214$[/tex] & 12 \\
\hline [tex]$215-219$[/tex] & 36 \\
\hline [tex]$220-224$[/tex] & 87 \\
\hline [tex]$225-229$[/tex] & 28 \\
\hline [tex]$230-234$[/tex] & 0 \\
\hline [tex]$235-239$[/tex] & 0 \\
\hline
\end{tabular}

A. 4.5
B. 5
C. 4



Answer :

To identify the class width for the given frequency distribution, follow these steps:

1. Look at the weight intervals provided in the distribution:
- \(200-204\)
- \(205-209\)
- \(210-214\)
- \(215-219\)
- \(220-224\)
- \(225-229\)
- \(230-234\)
- \(235-239\)

2. Choose any one of the weight intervals to find the class width. For example, let's choose the interval \(200-204\).

3. The class width is the difference between the upper and lower boundaries of a class interval, plus one:

[tex]\[ \text{Class Width} = \text{Upper Boundary} - \text{Lower Boundary} + 1 \][/tex]

4. For the interval \(200-204\):
[tex]\[ \text{Upper Boundary} = 204 \][/tex]
[tex]\[ \text{Lower Boundary} = 200 \][/tex]
[tex]\[ \text{Class Width} = 204 - 200 + 1 = 5 \][/tex]

Hence, the class width for the given frequency distribution is [tex]\(5\)[/tex].