What is the product?

[tex]\left(-6a^3b + 2ab^2\right)\left(5a^2 - 2ab^2 - b\right)[/tex]

A. [tex]-30a^6b + 12a^3b^2 + 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2[/tex]

B. [tex]-30a^5b + 12a^4b^3 + 16a^3b^2 - 4a^2b^4 - 2ab^3[/tex]

C. [tex]30a^5b - 12a^4b^3 + 4a^3b^2 - 4a^2b^4 - 2ab^3[/tex]

D. [tex]30a^6b - 12a^3b^2 - 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2[/tex]



Answer :

To find the product of the two polynomials \( \left(-6 a^3 b + 2 a b^2\right) \) and \( \left(5 a^2 -2 a b^2 - b\right) \), follow these steps:

1. Distribute each term in the first polynomial to each term in the second polynomial.

[tex]\[ (-6 a^3 b) \cdot (5 a^2) = -30 a^5 b \][/tex]
[tex]\[ (-6 a^3 b) \cdot (-2 a b^2) = 12 a^4 b^3 \][/tex]
[tex]\[ (-6 a^3 b) \cdot (-b) = 6 a^3 b^2 \][/tex]
[tex]\[ (2 a b^2) \cdot (5 a^2) = 10 a^3 b^2 \][/tex]
[tex]\[ (2 a b^2) \cdot (-2 a b^2) = -4 a^2 b^4 \][/tex]
[tex]\[ (2 a b^2) \cdot (-b) = -2 a b^3 \][/tex]

2. Combine the like terms:

[tex]\[ -30 a^5 b \][/tex]
[tex]\[ + 12 a^4 b^3 \][/tex]
[tex]\[ + (6 a^3 b^2 + 10 a^3 b^2) = 16 a^3 b^2 \][/tex]
[tex]\[ -4 a^2 b^4 \][/tex]
[tex]\[ -2 a b^3 \][/tex]

So, the final expanded product of the given polynomials is:

[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Therefore, the correct choice is:

[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]