Simplify the expression:

[tex]\[ \frac{-5(3-\sqrt[3]{27} \cdot 2)}{3} \][/tex]

A. \(\frac{6}{5}\)

B. \(5\)

C. \(-\frac{6}{5}\)

D. [tex]\(-5\)[/tex]



Answer :

Sure, let's simplify the expression step by step:
[tex]$ \frac{-5(3-\sqrt[3]{27} \cdot 2)}{3} $[/tex]

1. Evaluate the cube root:
The cube root of 27 is 3 because \( \sqrt[3]{27} = 3 \).

2. Multiply the cube root result by 2:
\( \sqrt[3]{27} \cdot 2 = 3 \cdot 2 = 6 \).

3. Subtract the result from 3:
\( 3 - 6 = -3 \).

4. Multiply by -5:
\( -5 \cdot (-3) = 15 \).

5. Divide by 3:
\( \frac{15}{3} = 5 \).

So, the simplified expression is [tex]\( \boxed{5} \)[/tex].